Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Fei Ai Za Zhi ; 27(3): 216-230, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38590196

RESUMO

Non-small cell lung cancer (NSCLC) is one of the malignant tumors with high morbidity and mortality worldwide. Ferroptosis is a new type of programmed cell death caused by abnormal accumulation of iron-dependent reactive oxygen species (ROS) leading to lipid peroxidation. It involves the balance between iron metabolism, lipid metabolism, oxygen free radical reaction and lipid peroxidation. Recent studies have found that ferroptosis is closely related to the occurrence and development of NSCLC. Due to the emergence of chemotherapy resistance and radiotherapy resistance in the treatment of NSCLC, there is an urgent need to develop new effective drugs and treatment strategies. Traditional Chinese medicine has unique advantages in the prevention and treatment of NSCLC due to its multi-targets and minimal side effects. In this review, we summarize the mechanism of ferroptosis in NSCLC, and discuss the research status of active ingredients of traditional Chinese medicine, single-herb traditional Chinese medicine and Chinese herbal compounds in the intervention of NSCLC through ferroptosis, in order to provide a new theoretical basis for the research of ferroptosis pathway and the prevention and treatment of NSCLC by targeted ferroptosis of traditional Chinese medicine.
.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Medicina Tradicional Chinesa , Neoplasias Pulmonares/tratamento farmacológico , Ferro
2.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2000-2009, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282890

RESUMO

Lung cancer is one of the common malignant tumors in the world, and its incidence and mortality is increasing year by year. Interactions between tumor cells and immune cells in the tumor microenvironment(TME) affect tumor proliferation, infiltration, and metastasis. Tumor-associated macrophages(TAMs) are prominent components of TME, and they have dual regulation effects on malignant progression of lung cancer. The number, activity, and function of M2 macrophages are related to the poor prognosis of lung cancer, and M2 macrophages participate in tumor angiogenesis and immune escape. It has been proved that traditional Chinese medicines(TCMs) and their active ingredients can enhance the antitumor effects, reduce the toxicity of chemotherapy and radiotherapy, and prolong the survival rates of patients with cancer. This paper summarized the role of TAMs in the lung cancer initiation and progression, explored the molecular mechanism of TCM in regulating the recruitment, polarization phenotype, activity, and expression of related factors and proteins of TAMs, and discussed related signal pathways in the prevention and treatment of lung cancer based on the TCM theory of "reinforcing healthy qi and eliminating pathogen". This paper is expected to provide new ideas for the immunotherapy of targeted TAMs.


Assuntos
Neoplasias Pulmonares , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Medicina Tradicional Chinesa , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Macrófagos , Imunoterapia , Microambiente Tumoral
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(1): 9-15, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35078570

RESUMO

Objective To investigate the effect of baicalin on acute lung injury (ALI) induced by lipopolysaccharide (LPS), and to explore the roles of M1/M2 polarization of pulmonary macrophages and M1/M2 macrophage-mediated inflammation in the effect. Methods Sixty SD rats were divided into six groups: normal control group, LPS group, (10, 50, 100) mg/kg baicalin combined with LPS group, and dexamethasone (DEX) group. ALI models were established by intratracheal instillation of LPS. After 24 hours, bronchoalveolar lavage fluid (BALF) and bilateral lung tissues were collected. The pathological changes of rat lung tissue were observed by HE staining, and the wet/dry mass ratio (W/D) of lung tissue was measured; the contents of IL-1ß, IL-6, TNF-α, and IL-10 in BALF were detected by ELISA; the M1 macrophage marker inducible nitric oxide synthase (iNOS) and the M2 macrophage marker CD206 in CD68 positive macrophages were detected by immunofluorescence cytochemical staining; the mRNA expressions of iNOS, IL-1ß, Arg1, and CD206 were detected by real-time PCR, and the protein expressions of iNOS and Arg1 were detected by Western blot analysis. Results Baicalin significantly reduced lung lesions and lung water content in ALI rats, and down-regulated the secretion levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß, while up-regulated the secretion of anti-inflammatory cytokine IL-10 in BALF. Baicalin significantly inhibited the lung macrophage polarization to M1 phenotype, and promoted the polarization to M2 phenotype. Baicalin significantly decreased the mRNA and protein expression levels of IL-1ß and iNOS, while increased the mRNA and protein expression levels of CD206 and Arg1 in lung tissues. Conclusion Baicalin can inhibit the lung macrophage polarization to M1 phenotype, promote the polarization to M2 phenotype, and reduce the M1/M2 ratio, thereby alleviating the LPS-induced pulmonary inflammatory response in ALI rats.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Animais , Flavonoides , Macrófagos , Ratos , Ratos Sprague-Dawley
4.
J Cell Biochem ; 120(4): 6223-6236, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30335896

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading cause of death due to tis high morbidity and mortality. microRNAs have emerged as new biomarkers for the prognosis and diagnosis of patients with COPD. In this study, we aimed to investigate the expression of microRNA-206 (miR-206) in lung tissues from COPD patients and to explore the regulatory role of miR-206 in the human pulmonary microvascular endothelial cells (HPMECs). Our results showed that cigarette smoke extract (CSE) promoted cell apoptosis, increased caspase-3 activity, and upregulated the expression of miR-206 in HPMECs, which was significantly reversed by the miR-206 knockdown. Transfection with miR-206 mimics led to cell apoptosis and was closely related to changes in the protein expression levels of caspase-3, caspase-9, and Bcl-2 in HPMECs. Further bioinformatics prediction analysis revealed that the 3'-untranslated region (3'UTR) of Notch3 and vascular endothelial growth factor-A (VEGFA) harbored miR-206-binding sites, and overexpression of miR-206 repressed the luciferase activity of the vectors containing Notch3 and VEGFA 3'UTR. Overexpression of either Notch3 or VEGFA attenuated miR-206-induced cell apoptosis in HPMECs. More importantly, miR-206 expression was upregulated in the lung tissues from COPD patients and was positively corrected with forced expiratory volume 1% predicted in COPD patients, while Notch3 and VEGFA mRNA levels were downregulated and were negatively correlated with the expression level of miR-206 in the lung tissues from COPD patients. In conclusion, our results showed that miR-206 was upregulated in COPD patients and CSE-treated HPMECs, promoted cell apoptosis via directly targeting Notch3 and VEGFA in HPMECs.


Assuntos
MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Receptor Notch3/genética , Fumaça/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas , Idoso , Estudos de Casos e Controles , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptor Notch3/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Plant Physiol ; 174(2): 1274-1284, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28450424

RESUMO

Folates, termed from tetrahydrofolate (THF) and its derivatives, function as coenzymes in one-carbon transfer reactions and play a central role in synthesis of nucleotides and amino acids. Dysfunction of cellular folate metabolism leads to serious defects in plant development; however, the molecular mechanisms of folate-mediated cellular modifications and physiological responses in plants are still largely unclear. Here, we reported that THF controls flowering time by adjusting DNA methylation-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Wild-type seedlings supplied with THF as well as the high endogenous THF content mutant dihydrofolate synthetase folypoly-Glu synthetase homolog B exhibited significant up-regulation of the flowering repressor of Flowering Wageningen and thereby delaying floral transition in a dose-dependent manner. Genome-wide transcripts and DNA methylation profiling revealed that THF reduces DNA methylation so as to manipulate gene expression activity. Moreover, in accompaniment with elevated cellular ratios between monoglutamylated and polyglutamylated folates under increased THF levels, the content of S-adenosylhomo-Cys, a competitive inhibitor of methyltransferases, was obviously higher, indicating that enhanced THF accumulation may disturb cellular homeostasis of the concerted reactions between folate polyglutamylation and folate-dependent DNA methylation. In addition, we found that the loss-of-function mutant of CG DNA methyltransferase MET1 displayed much less responsiveness to THF-associated flowering time alteration. Taken together, our studies revealed a novel regulatory role of THF on epigenetic silencing, which will shed lights on the understanding of interrelations in folate homeostasis, epigenetic variation, and flowering control in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Epigênese Genética/efeitos dos fármacos , Flores/genética , Inativação Gênica/efeitos dos fármacos , Tetra-Hidrofolatos/farmacologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Flores/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Ácido Poliglutâmico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA